Find all zeroes of the polynomial $(2x^4 - 9x^3 + 5x^2 + 3x - 1)$
Polynomials (10)Find all zeroes of the polynomial $(2x^4 - 9x^3 + 5x^2 + 3x - 1)$ if two of its zeroes are $(2 + \sqrt{3})$ and $(2 - \sqrt{3})$.
Answer
p(x) = 2x4 - 9x3 + 5x2 + 3x -1
$2 + \sqrt{3}$ and $2 – \sqrt{3}$ are zeroes of p(x)
p(x) = $(x - 2 - \sqrt{3}) (x - 2 + \sqrt{3}) \times g(x)$
= (x2 - 4x + 1) g(x)
(2x4 - 9x3 + 5x2 + 3x - 1) ÷ (x2 - 4x + 1) = 2x2 - x - 1
g(x) = 2x2 - x - 1
= (2x + 1)(x -1)
Therefore other zeroes are x = $-\frac{1}{2}$ and x = 1
Therefore all zeroes are $(2 + \sqrt{3}) and (2 – \sqrt{3}). -\frac{1}{2} and 1$
Exam Year:
2018