Find the discriminant of the quadratic equation $3x^2 -2x + \frac{1}{3} = 0$ and hence find the nature of its roots
Quadratic Equations (10)Find the discriminant of the quadratic equation $ 3x^2 - 2x + \frac{1}{3} = 0 $ and hence find the nature of its roots
Answer
$$ 3x^2 -2x + \frac{1}{3} = 0 $$
$$ a = 3, b = -2, c = \frac{1}{3} $$
$$ D = b^2 - 4ac = (-2)^2 - 4(3)\left(\frac{1}{3}\right) = 0 $$
Roots are real and equal.
- Exam Year: 2023