As observed from the top of a 100 m high light house
Trigonometry (10)As observed from the top of a 100 m high light house from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships. [Use $\sqrt{3}$ = 1.732]
Answer

Let AB be the tower and ships are at points C and D.
$$ \tan45^0 = \frac{AB}{BC} $$
$$ \frac{AB}{BC} = 1 $$
AB = BC
$$ 30^0 = \frac{1}{\sqrt{3}} = \frac{AB}{BC+CD} $$
$$ \frac{1}{\sqrt{3}} = \frac{AB}{BC+CD} $$
$$ AB +CD= \sqrt{3}AB $$
$$ CD = AB(\sqrt{3} - 1) $$
= 100 x (1.732 - 1)
= 73.2 m
- Exam Year: 2018
Related Questions
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- Evaluate: (3 sin 43°/cos 47°)^2
- On a straight line passing through the foot of a tower, two points C and D
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- What is the value of $(cos^2 67° - sin^2 23°)$
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is