If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
Trigonometry (10)If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
Answer
$$ \sin \alpha = \frac{1}{2} $$
$$ \alpha = 30^{\circ} $$
$$ \therefore 3 \cos \alpha - 4 \cos^3 \alpha = 3 \cos 30^{\circ} - 4 \cos^3 30^{\circ} $$
Related Questions
- As observed from the top of a 100 m high light house
- The shadow of a tower standing on a level ground is found to be 40 m
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- Evaluate: (3 sin 43°/cos 47°)^2
- From the top of a 7 m high building, the angle of elevation of the top