If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
Trigonometry (10)If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
Answer
$$ \sin \alpha = \frac{1}{2} $$
$$ \alpha = 30^{\circ} $$
$$ \therefore 3 \cos \alpha - 4 \cos^3 \alpha = 3 \cos 30^{\circ} - 4 \cos^3 30^{\circ} $$
Related Questions
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
- The shadow of a tower standing on a level ground is found to be 40 m
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- The angle of elevation of the top of a 30 m high tower
- On a straight line passing through the foot of a tower, two points C and D