If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
Trigonometry (10)If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A.
Answer
tan 2A = cot (A - 18°)
90°- 2A = A - 18°
3A = 108°
A = 36°
- Exam Year: 2018
Related Questions
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- If sin A = $\frac{3}{4}$ , calculate sec A
- The angle of elevation of the top of a 30 m high tower
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- The shadow of a tower standing on a level ground is found to be 40 m
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $