If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
Trigonometry (10)If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A.
Answer
tan 2A = cot (A - 18°)
90°- 2A = A - 18°
3A = 108°
A = 36°
Exam Year:
2018
Related Questions
- The angle of elevation of the top of a 30 m high tower
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him
- If sin A = $\frac{3}{4}$ , calculate sec A
- From the top of a 7 m high building, the angle of elevation of the top