If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
Trigonometry (10)If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A.
Answer
tan 2A = cot (A - 18°)
90°- 2A = A - 18°
3A = 108°
A = 36°
Exam Year:
2018
Related Questions
- The shadow of a tower standing on a level ground is found to be 40 m
- An aeroplane is flying at a height of 300 m above the ground
- The angle of elevation of the top of a 30 m high tower
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- If sin A = $\frac{3}{4}$ , calculate sec A
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$