If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
Trigonometry (10)If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A.
Answer
tan 2A = cot (A - 18°)
90°- 2A = A - 18°
3A = 108°
A = 36°
Exam Year:
2018
Related Questions
- What is the value of $(cos^2 67° - sin^2 23°)$
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
- An aeroplane is flying at a height of 300 m above the ground