If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
Trigonometry (10)If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A.
Answer
tan 2A = cot (A - 18°)
90°- 2A = A - 18°
3A = 108°
A = 36°
Exam Year:
2018
Related Questions
- The angle of elevation of the top of a 30 m high tower
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- The shadow of a tower standing on a level ground is found to be 40 m
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
- Evaluate: (3 sin 43°/cos 47°)^2