Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
Trigonometry (10)Prove that:
$\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
Answer
Exam Year:
2019
Related Questions
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him
- Evaluate: (3 sin 43°/cos 47°)^2
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- From the top of a 7 m high building, the angle of elevation of the top