Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
Trigonometry (10)Prove that:
$\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
Answer
Exam Year:
2019
Related Questions
- The angle of elevation of the top of a 30 m high tower
- Evaluate: (3 sin 43°/cos 47°)^2
- As observed from the top of a 100 m high light house
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
- The shadow of a tower standing on a level ground is found to be 40 m