Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
Trigonometry (10)Prove that:
$\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
Answer

- Exam Year: 2019
Related Questions
- If sin A = $\frac{3}{4}$ , calculate sec A
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- An aeroplane is flying at a height of 300 m above the ground
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
- From the top of a 7 m high building, the angle of elevation of the top
- The angle of elevation of the top of a 30 m high tower