Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
Trigonometry (10)Prove that:
$\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
Answer
Exam Year:
2019
Related Questions
- Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- An aeroplane is flying at a height of 300 m above the ground
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A