Given $\Delta ABC \sim \Delta PQR$, if $\frac{AB}{PQ} =\frac{1}{3}$
Triangles (10)Given $ \Delta ABC \sim \Delta PQR, if \frac{AB}{PQ} = \frac{1}{3}$, then find $\frac{ar\Delta ABC}{ar\Delta PQR}$
Answer
$$\frac{ar\Delta ABC}{ar\Delta PQR} $$
$$ = \frac{AB^2}{PQ^2}$$
$$ = \left(\frac{1}{3}\right)^2 = \frac{1}{9} $$
Exam Year:
2018
Related Questions
- Two right triangles ABC and DBC are drawn on the same hypotenuse BC
- Prove that the area of an equilateral triangle described on one side of the square is equal
- In an equilateral $\triangle$ ABC, D is a point on side BC such that BD
- Observe the figures given below carefully and answer the questions
- Diagonals of a trapezium PQRS intersect each other at the point O
- If the area of two similar triangles are equal, prove that they are congruent