What is the value of $(cos^2 67° - sin^2 23°)$
Trigonometry (10)What is the value of $(cos^2 67° – sin^2 23°)$ ?
Answer
cos 67° = sin 23°
cos2 67° - sin2 23 = 0
Exam Year:
2018
Related Questions
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
- Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $