What is the value of $(cos^2 67° - sin^2 23°)$
Trigonometry (10)What is the value of $(cos^2 67° – sin^2 23°)$ ?
Answer
cos 67° = sin 23°
cos2 67° - sin2 23 = 0
Exam Year:
2018
Related Questions
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- From the top of a 7 m high building, the angle of elevation of the top
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- On a straight line passing through the foot of a tower, two points C and D
- An aeroplane is flying at a height of 300 m above the ground