The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
Trigonometry (10)The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- -2
- 5
- 3
- -3
Answer
C. 3
- Exam Year: 2023
Related Questions
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- What is the value of $(cos^2 67° - sin^2 23°)$
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
- As observed from the top of a 100 m high light house
- If sin A = $\frac{3}{4}$ , calculate sec A