The angle of elevation of the top of a 30 m high tower
Trigonometry (10)The angle of elevation of the top of a 30 m high tower at a point 30 m away from the base of the tower is
- 30°
- 45°
- 60°
- 90°
Answer
B. 45°
- Exam Year: 2023
Related Questions
- On a straight line passing through the foot of a tower, two points C and D
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$