The angle of elevation of the top of a 30 m high tower
Trigonometry (10)The angle of elevation of the top of a 30 m high tower at a point 30 m away from the base of the tower is
- 30°
- 45°
- 60°
- 90°
Answer
B. 45°
Exam Year:
2023
Related Questions
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- An aeroplane is flying at a height of 300 m above the ground
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $