The angle of elevation of the top of a 30 m high tower
Trigonometry (10)The angle of elevation of the top of a 30 m high tower at a point 30 m away from the base of the tower is
- 30°
- 45°
- 60°
- 90°
Answer
B. 45°
Exam Year:
2023
Related Questions
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- If sin A = $\frac{3}{4}$ , calculate sec A