If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
Trigonometry (10)If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $, then $ \angle C $ is equal
- 47o
- 50o
- 83o
- 130o
Answer
B. 50o
Exam Year:
2023
Related Questions
- Evaluate: (3 sin 43°/cos 47°)^2
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- As observed from the top of a 100 m high light house
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- An aeroplane is flying at a height of 300 m above the ground