If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
Trigonometry (10)If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $, then $ \angle C $ is equal
- 47o
- 50o
- 83o
- 130o
Answer
B. 50o
Exam Year:
2023
Related Questions
- What is the value of $(cos^2 67° - sin^2 23°)$
- Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
- Evaluate: (3 sin 43°/cos 47°)^2
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
- The shadow of a tower standing on a level ground is found to be 40 m