If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
Trigonometry (10)If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $, then $ \angle C $ is equal
- 47o
- 50o
- 83o
- 130o
Answer
B. 50o
Exam Year:
2023
Related Questions
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
- On a straight line passing through the foot of a tower, two points C and D
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him
- The shadow of a tower standing on a level ground is found to be 40 m
- Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$