If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
Trigonometry (10)If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $, then $ \angle C $ is equal
- 47o
- 50o
- 83o
- 130o
Answer
B. 50o
Exam Year:
2023
Related Questions
- The angle of elevation of the top of a 30 m high tower
- Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
- What is the value of $(cos^2 67° - sin^2 23°)$
- As observed from the top of a 100 m high light house
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$