If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
Trigonometry (10)If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $, then $ \angle C $ is equal
- 47o
- 50o
- 83o
- 130o
Answer
B. 50o
Exam Year:
2023
Related Questions
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- Evaluate: (3 sin 43°/cos 47°)^2
- What is the value of $(cos^2 67° - sin^2 23°)$
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $