$ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
Trigonometry (10)$ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
Answer
Exam Year:
2018
Related Questions
- An aeroplane is flying at a height of 300 m above the ground
- On a straight line passing through the foot of a tower, two points C and D
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A