$ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
Trigonometry (10)$ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
Answer
Exam Year:
2018
Related Questions
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- The angle of elevation of the top of a 30 m high tower
- From the top of a 7 m high building, the angle of elevation of the top
- If sin A = $\frac{3}{4}$ , calculate sec A
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $