$ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
Trigonometry (10)$ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
Answer

- Exam Year: 2018
Related Questions
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- The shadow of a tower standing on a level ground is found to be 40 m
- What is the value of $(cos^2 67° - sin^2 23°)$
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A