Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
Trigonometry (10)Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A$
Answer
$$ LHS = \frac \sin A - 2 sin^3A} {2cos^3A - cos A} $$
$$ = \frac{\sin A(1 - 2 sin ^2A)}{cos A (2 cos ^2A -1 )} $$
$$ = \frac{\sin A(1-2(1 - \cos^2A))}{ \cos A(2 cos^2 A - 1)} $$
$$ = \tan A\frac{(2cos^2 A - 1)}{(2cos^2 A -1)} $$
$$ = \tan A= RHS $$
Exam Year:
2018
Related Questions
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- Evaluate: (3 sin 43°/cos 47°)^2
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- As observed from the top of a 100 m high light house