Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
Trigonometry (10)Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A$
Answer
$$ LHS = \frac \sin A - 2 sin^3A} {2cos^3A - cos A} $$
$$ = \frac{\sin A(1 - 2 sin ^2A)}{cos A (2 cos ^2A -1 )} $$
$$ = \frac{\sin A(1-2(1 - \cos^2A))}{ \cos A(2 cos^2 A - 1)} $$
$$ = \tan A\frac{(2cos^2 A - 1)}{(2cos^2 A -1)} $$
$$ = \tan A= RHS $$
Exam Year:
2018
Related Questions
- The angle of elevation of the top of a 30 m high tower
- The shadow of a tower standing on a level ground is found to be 40 m
- As observed from the top of a 100 m high light house
- From the top of a 7 m high building, the angle of elevation of the top
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- If sin A = $\frac{3}{4}$ , calculate sec A