Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
Trigonometry (10)Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A$
Answer
$$ LHS = \frac \sin A - 2 sin^3A} {2cos^3A - cos A} $$
$$ = \frac{\sin A(1 - 2 sin ^2A)}{cos A (2 cos ^2A -1 )} $$
$$ = \frac{\sin A(1-2(1 - \cos^2A))}{ \cos A(2 cos^2 A - 1)} $$
$$ = \tan A\frac{(2cos^2 A - 1)}{(2cos^2 A -1)} $$
$$ = \tan A= RHS $$
- Exam Year: 2018
Related Questions
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
- What is the value of $(cos^2 67° - sin^2 23°)$
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- An aeroplane is flying at a height of 300 m above the ground