Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
Trigonometry (10)Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A$
Answer
$$ LHS = \frac \sin A - 2 sin^3A} {2cos^3A - cos A} $$
$$ = \frac{\sin A(1 - 2 sin ^2A)}{cos A (2 cos ^2A -1 )} $$
$$ = \frac{\sin A(1-2(1 - \cos^2A))}{ \cos A(2 cos^2 A - 1)} $$
$$ = \tan A\frac{(2cos^2 A - 1)}{(2cos^2 A -1)} $$
$$ = \tan A= RHS $$
Exam Year:
2018
Related Questions
- Evaluate: (3 sin 43°/cos 47°)^2
- An aeroplane is flying at a height of 300 m above the ground
- On a straight line passing through the foot of a tower, two points C and D
- If sin A = $\frac{3}{4}$ , calculate sec A
- What is the value of $(cos^2 67° - sin^2 23°)$
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$