Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
Trigonometry (10)Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A$
Answer
$$ LHS = \frac \sin A - 2 sin^3A} {2cos^3A - cos A} $$
$$ = \frac{\sin A(1 - 2 sin ^2A)}{cos A (2 cos ^2A -1 )} $$
$$ = \frac{\sin A(1-2(1 - \cos^2A))}{ \cos A(2 cos^2 A - 1)} $$
$$ = \tan A\frac{(2cos^2 A - 1)}{(2cos^2 A -1)} $$
$$ = \tan A= RHS $$
Exam Year:
2018
Related Questions
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- The angle of elevation of the top of a 30 m high tower
- As observed from the top of a 100 m high light house
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is