Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
Trigonometry (10)Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A$
Answer
$$ LHS = \frac \sin A - 2 sin^3A} {2cos^3A - cos A} $$
$$ = \frac{\sin A(1 - 2 sin ^2A)}{cos A (2 cos ^2A -1 )} $$
$$ = \frac{\sin A(1-2(1 - \cos^2A))}{ \cos A(2 cos^2 A - 1)} $$
$$ = \tan A\frac{(2cos^2 A - 1)}{(2cos^2 A -1)} $$
$$ = \tan A= RHS $$
Exam Year:
2018
Related Questions
- The angle of elevation of the top of a 30 m high tower
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- The shadow of a tower standing on a level ground is found to be 40 m
- As observed from the top of a 100 m high light house
- An aeroplane is flying at a height of 300 m above the ground