Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
Trigonometry (10)Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
Answer
$$ LHS = \frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{1 + \frac{\sin^2 A}{\cos^2A}}{1 + \frac{\cos^2A}{\sin^2A}} $$
$$ = \frac{\frac{\cos^2 A + \sin^2 A}{\cos^2A}} {\frac{\sin^2A + \cos^2A}{\sin^2A}} $$
$$ = \frac{\frac{1}{\cos^2 A}} {\frac{1}{\sin2A}} = \frac{\sin^2A}{\cos^2A} = {\frac{1 - \cos^2A}{\cos^2A}} $$
$$ \frac{1}{\cos^2A} - 1 = \sec^2A -1 = \text{RHS} $$
- Exam Year: 2023
Related Questions
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- Evaluate: (3 sin 43°/cos 47°)^2
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$