Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
Trigonometry (10)Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
Answer
$$ LHS = \frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{1 + \frac{\sin^2 A}{\cos^2A}}{1 + \frac{\cos^2A}{\sin^2A}} $$
$$ = \frac{\frac{\cos^2 A + \sin^2 A}{\cos^2A}} {\frac{\sin^2A + \cos^2A}{\sin^2A}} $$
$$ = \frac{\frac{1}{\cos^2 A}} {\frac{1}{\sin2A}} = \frac{\sin^2A}{\cos^2A} = {\frac{1 - \cos^2A}{\cos^2A}} $$
$$ \frac{1}{\cos^2A} - 1 = \sec^2A -1 = \text{RHS} $$
Exam Year:
2023
Related Questions
- As observed from the top of a 100 m high light house
- From the top of a 7 m high building, the angle of elevation of the top
- If sin A = $\frac{3}{4}$ , calculate sec A
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him