Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
Trigonometry (10)Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $
Answer
$$ LHS = \frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{1 + \frac{\sin^2 A}{\cos^2A}}{1 + \frac{\cos^2A}{\sin^2A}} $$
$$ = \frac{\frac{\cos^2 A + \sin^2 A}{\cos^2A}} {\frac{\sin^2A + \cos^2A}{\sin^2A}} $$
$$ = \frac{\frac{1}{\cos^2 A}} {\frac{1}{\sin2A}} = \frac{\sin^2A}{\cos^2A} = {\frac{1 - \cos^2A}{\cos^2A}} $$
$$ \frac{1}{\cos^2A} - 1 = \sec^2A -1 = \text{RHS} $$
Exam Year:
2023
Related Questions
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- From the top of a 7 m high building, the angle of elevation of the top
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $