If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground
Trigonometry (10)If a tower 30 m high, casts a shadow $10\sqrt{3}$ m long on the ground, then what is the angle of elevation of the sun ?
Answer
Exam Year:
2017
Related Questions
- If $ \triangle ABC \sim \triangle DEF $ and $ \angle A = 47^{\circ}, \angle E = 83^{\circ} $
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
- Evaluate: (3 sin 43°/cos 47°)^2
- The angle of elevation of the top of a 30 m high tower
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$