$\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
Trigonometry (10)Evaluate: $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
Answer
Exam Year:
2019
Related Questions
- On a straight line passing through the foot of a tower, two points C and D
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- The angle of elevation of the top of a 30 m high tower
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- Prove that $ \frac{1 + tan^2 A}{1 + cot^2 A} = sec^2A -1 $