$\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
Trigonometry (10)Evaluate: $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
Answer
Exam Year:
2019
Related Questions
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him
- If sin A = $\frac{3}{4}$ , calculate sec A
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- The value of $ 5 \sin^2 90^{\circ} - 2 cos^20^{\circ} $ is
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $