Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
Trigonometry (10)Prove that:
$\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
Answer
Exam Year:
2019
Related Questions
- Evaluate: (3 sin 43°/cos 47°)^2
- The shadow of a tower standing on a level ground is found to be 40 m
- If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A
- If $ \sin\alpha = \frac{1}{2} $, then find the value of $ 3 \cos \alpha − 4 cos^3 \alpha $
- An aeroplane is flying at a height of 300 m above the ground
- Prove that: $ \frac{\sin A - 2 \sin^3 A} {2 \cos^3 A – \cos A} = \tan A $