Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
Trigonometry (10)Prove that:
$\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
Answer
Exam Year:
2019
Related Questions
- Prove that: $\frac{\tan\theta} {1- \cot\theta}$ + $\frac{\cot\theta}{1-\tan\theta}$ = $1 + \sec\theta \csc\theta$
- $ If 4 \tan \theta = 3, evaluate \frac{4 \sin\theta - \cos\theta + 1}{4 \sin\theta + \cos \theta - 1}$
- From the top of a 7 m high building, the angle of elevation of the top
- Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him
- As observed from the top of a 100 m high light house
- If sin A = $\frac{3}{4}$ , calculate sec A