Prove that: $\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
Trigonometry (10)Prove that:
$\frac{\sin\theta} {\cot\theta +\csc\theta}$ = 2 + $\frac{\sin\theta}{\cot\theta - \csc\theta}$
Answer
Exam Year:
2019
Related Questions
- From the top of a 7 m high building, the angle of elevation of the top
- The angle of elevation of the top of a 30 m high tower
- $\sin^2 60^{\circ} + 2 \tan 45^{\circ} – \cos^2 30^{\circ} $
- What is the value of $(cos^2 67° - sin^2 23°)$
- An aeroplane is flying at a height of 300 m above the ground
- Evaluate: (3 sin 43°/cos 47°)^2